SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Outline:	DATA BASE MANAGEMENT I
Code No.:	EDP 215
Program:	PROGRAMMER
Semester:	
Date:	SEPTEMBER 1988
Author:	DENNIS OCHOSKI

New:

Revision: X

<u>88-09-02</u> Date

APPROVED:

Chairperson

DATA BASE MANAGEMENT I

Course Name

EDP 215

Course Number

LENGTH OF COURSE: Five periods per week for one semester TEXTS: Database Processing - David Kroenke SEED A.D.S. (Application Development System) Pocket Guide SEED D.S.O. (Decision Support Option) Pocket Guide

OTHER REFERENCES: SEED KERNEL User Guide SEED BLOOM User Guide SEED HARVEST User Guide

PURPOSE: This is an introductory course in database management systems.

The course begins with a study of the necessary terminology and concepts to gain an appreciation of what a database/database management system is. Database design skills are developed by defining and writing schemas, sub-schemas, and set relationships.

Practical skills are developed through the study and use of SEED, a CODASYL data base, including its data manipulation language, online inquiry, and report generator.

- 2 -

PART A:

The following modules pertain specifically to the theoretical concepts discussed in the course.

Module 1; Introduction to database (Chapter 1)

Objectives: When this module is completed the student should be able to:

- distinguish database processing from file processing.
- understand the advantages and disadvantages of database processing.
- identify the role that various components of a database system play.
- define the terms logical and physical record/file, primary and secondary key, unique and nonunique key, schema, subschema, and internal view.

Module 2: Database structures (Chapter 4)

Objectives:

When this module is completed the student should be able to:

- understand the concept of sequential, linked, and inverted lists.
- distinguish among trees, simple networks and complex networks.
- understand the difference between flat files and nonflat files.
- 4. show the relevence of data structures to database processing
- 5. illustrate the usefulness of linked lists.
- understand how trees, simple networks, and complex networks can be represented using linked lists and inverted lists.
- understand how secondary unique and nonunique keys can be represented using linked lists and inverted lists.

Module 3: Database Design (Chapter 5)

Objectives: When this module is completed the student should be able to:

- 1. understand the complexities of database design.
- understand the inputs, outputs, and processes for both logical and physical database design.
- understand the process for database design and implementation.
- Module 4: Database models (CHapters 9, 10, 7, and appendix A)
 - Objectives: When this module is completed the student should be able to:
 - 1. understand the nature of database processing using the CODASYL model.
 - represent trees, simple networks, and complex networks with the CODASYL model.
 - 3. explain relational model terminology.
 - show how trees, simple networks, and complex networks are represented in the relational model.
 - recognize and show results of compatible and noncompatible unions, differences, and intersections.
 - 6. explain IMS (hierarchical) model terminology.
 - show how trees, simple networks, and complex networks are represented on the hierarchical model.

- 4 -

. .

Module 5: Database Administration (Chapter 14)

Objectives: When this module is completed the student should be able to:

- understand the importance of database administration.
- define the DBA's role in the management of data activity.

. .

 define DBA personnel and placement within an organization.

PART B:

The following topics pertain to the SEED Data Base Management Systems and will be discussed concurrently with the theoretical concepts in Part "A".

Objectives: When Part "B" is completed the student should be able to:

- 1) establish relationships between a given set of data attributes.
- document the logical view of the data structure required by application.
- synthesize the logical views of the data structure into an overall logical SCHEMA.
- 4) code the logical views (SUB SCHEMAS) of the data structure and the SCHEMA.
- 5) implement a data base on the VAX.
- 6) use a Query language (HARVEST) against the data base.
- 7) use a Report Generator Language (BLOOM).
- establish and implement data access and controls on the data base.

- 5 -

The sourcess issue grade mas-

TESTS (3 @ 24%)	=	72%
Assignment #1	=	5%
Assignment #2	=	20%
Participation	=	3%
		100%

Grading:

A+	=	90	-	100%
A	=	80	-	89%
В	=	70	-	79%
С	=	60	-	69%
R	=	0	-	59%

Assignment Deadlines:

Assignments must be handed in **ON TIME**, otherwise they are subject to a 10% deduction per day late. All assignments must be submitted, otherwise the student has not fully completed the course and is subject to receiving an "R" grade.

NOTE: There will be no rewrites/supplemental test in this course.